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ABSTRACT
We investigate the dependence of the angular momentum transport (AMT) on the spatial scales with numerical

simulation of solar-like stars. It is thought that turbulence has an essential role in constructing solar differential

rotation (DR). In a widely used method to analyse the construction mechanism of DR, the flow is divided into

two components, ‘mean flow’ and ‘turbulence’, where ‘turbulence’ includes a broad spectrum of spatial scales. The

features of the AMT are expected to depend on the scale. In this study, we decompose the angular momentum flux

(AMF) to investigate the dependence of the AMF on the spatial scale. We compare the results with anti-solar- (fast

pole) and solar-type (fast equator) DR. Our conclusions are summarized as 1. Radially outward AMT is seen on a

large scale (60 Mm  L < 120 Mm) in rotationally constrained systems. 2. Even when the scale-integrated AMF

is negative, we sometimes observe positive AMF on certain scales. 3. Small-scale turbulence tends to transport the

angular momentum radially inward and causes the anti-solar DR, indicating that high-resolution simulation is a

negative factor for solar-like DR. Our method to decompose the AMF provides a deep understanding of the angular

momentum and construction mechanism of DR.

Key words: Sun: interior – Sun: rotation

1 INTRODUCTION

We can observe differential rotation (DR) in the solar convec-
tion zone, in which the rotation rate depends on the latitude.
Helioseismology has revealed the detailed profile of the DR
(Schou et al. 1998). In the solar case, the equator rotates
faster and the polar region rotates slower; this DR is called
solar-type DR. Conversely, DR with a slow equator and fast
poles is called anti-solar-type DR.

Turbulent thermal convection is thought to form the DR.
The Coriolis force induced by the solar rotation makes the
solar turbulent thermal convection anisotropic. Consequently,
turbulence transports the angular momentum in a specific
direction, which leads to large-scale flow construction. This
transport generates large-scale flow, i.e. DR and meridional
flow (MF).

We briefly summarize the mechanism of constructing large-
scale flow by turbulent angular momentum transport (AMT).
We start with the angular momentum conservation equation
derived from the longitudinal equation of motion in an iner-
tial (non-rotating) frame in the spherical geometry (r, ✓,�):

@

@t
(⇢0hLi) = �r · (⇢0�hu�umi), (1)

? E-mail: mn@ras.org.uk (KTS)

where ⇢ is the density. um = urer + u✓e✓ and u� are the
meridional and longitudinal fluid velocities in an inertial sys-
tem1. er and e✓ are the unit vectors in the radial and the
latitudinal directions, respectively. � = r sin ✓ is the distance
from the rotational axis. L = �u� is the specific angular mo-
mentum. The subscript 0 for the density indicates the spher-
ically symmetric value. hi means the longitudinal average.
We note that we ignore the magnetic field and viscosity in
this discussion for simplicity. Typically, we divide the fluid
velocity u into the mean part hui and the turbulent (per-
turbed) part u0, i.e. u = hui + u0. Then, we obtain the an-
gular momentum conservation equation with mean flow and
turbulence contributions:
@

@t
(⇢0hLi) = �r · (⇢0hLihvmi)

| {z }
mean flow contribution
�r ·

�
⇢0�hv0

mv
0
�i
�
.

| {z }
turbulence contribution

(2)

When the turbulence is anisotropic, the term hv0
mv

0
�i on the

right side becomes important and transports angular mo-
mentum in specific directions. We note that um = vm and
u
0
� = v

0
�. This procedure is broadly used to understand the

1 We use v for the fluid velocity in a rotating frame
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construction mechanism of DR (e.g. Brun & Toomre 2002;
Hotta et al. 2015).

One may notice that the division of ‘mean flow hvi’ and
‘turbulence v0’ is a somewhat rough idea. ‘Mean flow’ is the
longitudinal average in this discussion. This definition is rea-
sonable because we are usually interested in the DR and MF
observations, which are defined with the longitudinal average.
‘Turbulence’ in the discussion has a broad meaning because
it includes a broad spectrum of spatial scales except for the
longitudinal average. There should be a more detailed scale
dependence of the AMT by turbulence.

It is known that the influence of the rotation changes the di-
rection of the radial AMT. Roughly speaking, a weak (strong)
influence of the rotation leads to a negative (positive) radial
AMT (e.g. Karak et al. 2015). Featherstone & Miesch (2015)
suggest that a negative radial AMF and resulting one-cell MF
are the essential reasons for the anti-solar DR. In addition, it
is known that higher-resolution simulations more easily fall
into the anti-solar DR than lower-resolution ones (e.g. Hotta
et al. 2015). This result indicates that the small-scale turbu-
lence introduced in the high-resolution simulations transports
the angular momentum radially inward. To confirm this ten-
dency, we need to investigate the scale dependence of the
AMF, i.e. the scale decomposition of the AMF is required.

In this study, we decompose the AMT by the Reynolds
stress (turbulence), i.e. hv0

mv
0
�i, on different scales. We anal-

yse the results of three-dimensional magnetohydrodynamic
numerical simulations in a spherical shell. We investigate the
scale dependence of the AMT, and the key questions are:

(i) How does the AMT depend on the spatial scale?
(ii) Does small-scale turbulence tend to transport the an-

gular momentum radially inward?

This manuscript is constructed as follows: We describe the
model setup for the numerical simulations in section 2. Our
proposed method to decompose the AMT is introduced in
section 3. We present the simulation results and explain the
process of DR formation in section 4. The scale decomposition
of the AMF is also shown in section 4. Finally, we summarize
and conclude the paper in section 5.

2 NUMERICAL MODEL

We explain our numerical model setup in this section. We
solve the three-dimensional magnetohydrodynamic equations
in the spherical geometry (r, ✓,�). The whole sphere is cov-
ered with the Yin–Yang grid (Kageyama & Sato 2004). The
radial extent of the computational domain is 0.71R�  r 
0.96R�, where R� is the solar radius. The number of grid
points is (Nr, N�, N�, NYY) = (256 ⇥ 256 ⇥ 768 ⇥ 2), where
Nr, N✓, and N� indicate the grid points in radial, latitudinal,
and longitudinal directions, respectively. NYY is the factor
for the Yin–Yang grid. For our analyses, we convert the Yin–
Yang grid to ordinal spherical geometry with the number of
grid points of (Nr, N✓, N�) = (256⇥ 512⇥ 1024). We use the
R2D2 (Radiation and RSST for Deep Dynamics) code (Hotta
et al. 2019; Hotta & Iijima 2020; Hotta & Kusano 2021). The

magnetohydrodynamic equations are expressed as:

@⇢1

@t
= � 1

⇠2
r · (⇢v), (3)

@

@t
(⇢v) = �r · (⇢vv)�rp1 � ⇢1ger

+ 2⇢v ⇥⌦0 +
1

4⇡
(r⇥B)⇥B, (4)

@B
@t

= r⇥ (v ⇥B), (5)

⇢T
@s1

@t
= �⇢T (v ·r)s+Qs, (6)

p1 =

✓
@p

@⇢

◆

s

⇢1 +

✓
@p

@s

◆

⇢

s1, (7)

where ⇢,v,B, s, and p are density, velocity, magnetic field,
specific entropy, and pressure, respectively. The subscripts
0 and 1 express the spherical symmetric background and
the perturbation, respectively. ⇠ is the factor for the re-
duced speed of sound technique (RSST Hotta et al. 2012)
to relax the Courant–Friedrich–Lewy (CFL) condition by
the fast sound wave. The effective sound speed is reduced
by a factor ⇠, and we fix the reduced speed of sound at
2.5 km s

�1. Because we deal with small perturbations of
⇢1/⇢0 ⇠ p1/p0 ⇠ T1/T0 ⇠ 10

�6, we use the linearized equa-
tion of state (eq. (7)). The coefficients (@p/@⇢)s and (@p/@s)⇢

are calculated with the OPAL repository (Rogers et al. 1996).
We use the Model S (Christensen-Dalsgaard et al. 1996) for
the background stratification and related variables (see Hotta
& Iijima 2020, for more details). ⌦0 is the angular veloc-
ity vector of the system, where ⌦0 = ⌦0(cos ✓er � sin ✓e✓).
We prepare three cases, ⌦0 = 1⌦�, 2⌦�, and 3⌦�, where
⌦�/2⇡ = 413 nHz, ⌦� is the solar reference angular velocity.
We use the heating term Qs defined as:

Qs =
1

r2

@

@r
[r

2
(Frad + Fart)], (8)

Frad = �r
dT0

dr
, (9)

Fart =
L�

4⇡r2max

✓
r

rmax

◆2

exp


�
✓
r � rmax

dart

◆�
, (10)

where Frad and Fart are the radiation flux and artificial en-
ergy flux. Because our calculation does not include the pho-
tosphere, we need artificial cooling Fart to drive the thermal
convection. We extract the solar luminosity L� at the up-
per boundary rmax = 0.96R�. We use the diffusion approx-
imation for the radiation energy transfer Frad. The radia-
tive diffusion coefficient r is also obtained from the OPAL
repository. dart is the depth of the artificial cooling layer of
dart = 2Hp(rmax), where Hp(rmax) = 9.46 Mm is the pressure
scale height at r = 0.96R�. We continue the calculation for
5000 days for each case, and the following results are averaged
between t = 4500 to 5000 days unless otherwise noted.

3 METHOD OF DECOMPOSITION

In this study, we decompose the turbulence angular momen-
tum flux (AMF) to scale-dependent values. Following the dis-
cussion around eq. (2), the AMF by the Reynolds stress can
be written as

FR,↵ = ⇢0�hu0
↵u

0
�i, (11)
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Scale decomposition of angular momentum transport 3

where ↵ = r or ✓. We decompose FR,↵ with the Fourier trans-
form in the longitudinal direction and Parseval’s theorem.

We discuss a physical quantity g defined at each longi-
tudinal position �. We define the Fourier transform in the
longitudinal direction as:

bg(m) =
1

2⇡

Z 2⇡

0

g(�) exp (�im�) d�, (12)

where m is azimuthal order or the non-dimensional wave
number in the longitudinal direction. The wavelength of
each mode is Lm = 2⇡�/m. Parseval’s theorem implies
that the correlation of two quantities (g1(�) and g2(�)) can
be expanded with two separately Fourier-transformed values
(bg1(m) and bg2(m)) as

hg1(�)g2(�)i =
N�1X

m=0

bg1(m)bg⇤2(m), (13)

where ⇤ indicates the complex conjugate. This relation shows
that bg1(m)bg⇤2(m) is the contribution of wave number m to
the correlation hg1(�)g2(�)i. Because the numerical result is
discretized data, we relate the Fourier transform shown in eq.
(12) to the discrete Fourier transform (DFT) as:

bg(m) ⇠ 1

N�

N��1X

k=0

gkexp

✓
�i

2⇡mk

N�

◆
, (14)

where gk = g(�k) and �k = k��. �� = 2⇡/N� is the grid
spacing in the longitudinal direction. Because the Reynolds
stress only includes the perturbation from the longitudinal
average (m = 0), we only deal with the m 6= 0 mode as

hg01g02i = 2

N�/2�1X

m=1

Re[bg1(m)bg⇤2(m)] + Re


bg1

✓
N�

2

◆
bg⇤2

✓
N�

2

◆�
,

(15)

where Re[ ] represents the real part of each quantity, and
g
0
1, g

0
2 represent perturbation from longitudinal average. Eq.

(15) can be derived from eq. (13) using g = hgi+g
0
= bg(0)+g

0.
We have a factor of 2 in front of the sum because the sum is
only over positive values of m.

Because the wavelength is expressed as Lm = 2⇡�/m with
� = r sin ✓, the same m does not always mean the same spa-
tial scale in different positions (r, ✓). Thus, we divide the
Reynolds stress into four components based on the actual
scale Lm, not on the wave number m itself. Then, we collect
a similar wavelength to an AMF as:

FR,↵ = ⇢0�hv0↵v0�i =
4X

i=1

f
i
R,↵, (↵ = r, ✓), (16)

where the scale-dependent momentum flux f
i
R,↵ is defined as

f
i
R,↵(r, ✓) = 2⇢0�

mi(max)X

m=mi(min)

Re
⇥
bv↵bv⇤�

⇤
. (17)

When mi(max) = N�/2, the expression becomes

f
i
R,↵(r, ✓) = ⇢0�

0

@2

mi(max)�1X

m=mi(min)

Re
⇥
bv↵bv⇤�

⇤

+Re


bv↵

✓
N�

2

◆
bv�

✓
N�

2

◆�◆
. (18)

Table 1. Our choice of Li(max) and Li(min) to determine mi(min)

and mi(max) and resulting f i
R,↵is shown. R� is the solar radius.

i Li(min) Li(max)

1 240 Mm 2⇡R�
2 120 Mm 240 Mm
3 60 Mm 120 Mm
4 4⇡�/N� 60 Mm

Table 2. Rossby number Ro for each case.

case 1⌦� 2⌦� 3⌦�
Ro 0.115 0.059 0.035

mi(min) and mi(max) are calculated with the maximum Li(max)

and minimum Li(min) scale length included in the collection
of the AMF, respectively, as

mi(min)(r, ✓) = floor

✓
2⇡�

Li(max)

◆
+ 1, (19)

mi(max)(r, ✓) = floor

✓
2⇡�

Li(min)

◆
, (20)

where floor() is the floor function. Our choice of Li(max)

and Li(min) is shown in Table 1. Our definition of the scale-
dependent AMF f

i
R,↵ is the AMF contribution from the scales

Li(min)  Lm < Li(max). For i = 4, the scale-dependent AMF
includes all the contributions below 60 Mm. If mi(min) >

mi(max) at a particular position, we set f
i
R,↵ = 0 at that

position.

4 RESULT

4.1 General properties

Table 2 shows the Rossby number Ro evaluated in cases. Ro is
a dimensionless number that represents the effect of rotation
and is defined as

Ro =
vRMS

2⌦0d
, (21)

where d is the radial extent of the computational domain,
and vRMS is the rms velocity averaged in the longitudional
direction. We follow Featherstone & Miesch (2015) for the
definition of Ro.

The overall structure of the radial velocity vr in the cal-
culations at r = 0.83R� is shown in Fig. 1. It is known that
when the rotational influence is strong, we tend to see a ba-
nana cell, i.e. a north–south aligned convection pattern (e.g.
Miesch et al. 2000), which has an important role for the AMT
(e.g. Miesch 2005). We clearly observe a banana cell in the
3⌦� case (Fig. 1c) and the pattern becomes indistinct in the
1⌦� case (Fig. 1a). We note that the difference in the banana-
cell appearance between cases is not seen in the upper layers
(r = 0.96R�, the figure is not shown).

Fig. 2 shows the spectra of the kinetic energy. Blue, orange,
and green lines show the results from 1⌦�, 2⌦�, and 3⌦�
cases, respectively. We follow the definition of Hotta et al.
(2022) for the kinetic energy spectra (See their eq. (16)). The
relation between the spatial scale L and the spherical har-
monic degree ` is

L`(r) =
2⇡rp
`(`+ 1)

, (22)

MNRAS 000, 1–7 (2022)



4 K. Mori and H. Hotta

Figure 1. Radial velocity (vr) at r = 0.83R� is shown. Panels a, b, and c show the results from ⌦0 = 1⌦�, 2⌦�, and 3⌦� cases,
respectively. In the case with ⌦0 = 2⌦� and 3⌦�, banana cells, i.e. north–south aligned convection cells, are clearly seen, whereas typical
thermal convection structures dominate in the 1⌦� case. The values in this figure are at t = 5000 days.

Figure 2. Kinetic energy at r = 0.83R� is shown. Blue, orange,
and green lines show the results from 1⌦�, 2⌦�, and 3⌦� cases,
respectively. The large-scale energy (` < 30) is significantly re-
duced in the 3⌦� case. The three vertical dashed lines indicate
` corresponding to 240, 120, and 60 Mm, which divide the scale-
dependent AMF f i

R,↵. A Gaussian filter with three grid points
width is applied to reduce the realization noise.

The large-scale kinetic energy (` < 30) is suppressed in the
3⌦� case (green line), whereas the energy does not depend
on the rotation rate ⌦0 in the small scale (` > 30). This
indicates that the influence of rotation on the flow is reduced
on the small scale.

Fig. 3 shows the DR (upper panels) and the MF (bottom
panels). The 1⌦� and 2⌦� cases have anti-solar DR (panels a
and b), whereas the 3⌦� case has solar-type DR (panel c). We
obtain the fast pole in the 2⌦� case since we only include nu-
merical diffusivity in our simulations. In most of simulations,
explicit diffusivities, which lead to effectively lower resolu-
tion. In our simulation, small-scale turbulence is introduced
due to effective high resolution. As a result, inward radial
transports dominate and the polar acceleration occurs in the
2⌦� case as well as in the 1⌦� case (see also §4.2). Regard-
ing the MF, 1⌦� and 2⌦� cases have a single-cell, whereas
3⌦� case has multi-cell MF in a hemisphere. This result is

Figure 3. The DR h⌦1i/2⇡ (upper panels), and the MF hv✓i (bot-
tom panels), for each case are shown. The results from 1⌦� (pan-
els a and d), 2⌦� (panels b and e), and 3⌦� (panels c and f) are
shown. We can observe the anti-solar DR in the 1⌦� and 2⌦�
cases, where the polar region is rotating faster, whereas the 3⌦�
case shows the solar-like DR. As for the MF, we can see a mostly
single-cell flow in the 1⌦� and 2⌦� cases, whereas a multi-cell MF
is formed in the 3⌦� case.

consistent with Featherstone & Miesch (2015). They argued
that the single-cell MF transports the angular momentum
poleward and tends to construct the anti-solar DR.

Gyroscopic pumping is a useful idea for understanding the
AMT balance. The gyroscopic pumping is derived from the
conservation law of the angular momentum in a steady state
(@/@t = 0) (Miesch & Hindman 2011), written as:

0 ⇠ �⇢0hvmi ·rhLi
| {z }

GREY

�r · (⇢0�hv0
mv

0
�i)| {z }

GMER

. (23)

We again ignore the magnetic field just for simplicity, al-
though it contributes to this balance. We wish to understand
the role of turbulence in the AMT. GREY and GMER describe
the AMT by the Reynolds stress (turbulence) and the MF, re-
spectively. Fig. 4 shows GREY (upper panels) and GMER (bot-

MNRAS 000, 1–7 (2022)



Scale decomposition of angular momentum transport 5

Figure 4. The AMT transport by the meridional flow: GMER =
�⇢0hvmi · rhLi (upper panels) and by the Reynolds stress:
GREY = �r · (⇢0�hv0

mv0�i) (lower panels) for each case are shown.
The result from 1⌦� (panels a and d), 2⌦� (panels b and e), and
3⌦� (panels c and f) cases are shown. The two terms are mostly
balanced, and the residual can be explained by the magnetic con-
tribution.

tom panels) in the cases. The two terms are almost balanced
in all cases. The residual of the sum of the two terms can be
explained by the magnetic field. In 1⌦� and 2⌦� cases (pan-
els d and e), the Reynolds stress GREY reduces (increases) the
angular momentum in the upper (lower) part of the convec-
tion. This result indicates the radially inward AMT. In the
3⌦� case, we see a positive contribution of GREY in the low
latitudes outside the tangential cylinder (� > rmin). This is
the direct reason for the fast equator in the DR and multi-cell
MF in the 3⌦� case.

Fig. 5 shows the AMF by the Reynolds stress FR,↵ =

⇢0�hv0↵v0�i. When we reproduce the solar-like DR, i.e. the
3⌦� case, the radially outward AMT can be observed in the
low latitude (Fig. 5c), which drives the multi-cell MF and
the fast equator. In the other case, only the radially inward
AMT is achieved in all the latitudes (Fig. 5a and b). On the
other hand, there is no significant difference in the latitudinal
transport FR,✓ in each case (Fig. 5d, e, and f), i.e. all the cases
show equatorward AMT. These Reynolds stress distributions
are consistent with Karak et al. (2015); similarly in Karak
et al. (2015), the radial Reynolds stress transports inward
in almost all regions in the anti-solar type, while outward
transport occurs near the equator in the solar-type. As for
the latitudinal transport, both the anti-solar type and solar-
type commonly transport angular momentum to the equator.
From these simulation results, we can confirm that the radial
AMF FR,r is essential for determining whether there is anti-
solar- or solar-type DR.

4.2 Scale-dependent angular momentum flux

In the previous subsection, we investigate the overall property
of the AMT by the Reynolds stress (Figs. 4 and 5). We find

Figure 5. The AMFs by the Reynolds stress FR,↵ = ⇢0�hv0↵v0�i
are shown. The upper and lower panels show the radial and latitu-
dinal components of the AMF, respectively. The result from 1⌦�
(panels a and d), 2⌦� (panels b and e), and 3⌦� (panels c and f)
cases are shown. The white dashed lines indicate the value of zero.
In the 3⌦� case (panel c), we see the radially outward AMT in
the low latitude, whereas the other cases show only radially inward
AMT (panels a and b).

that the radially outward AMF is achieved in the 3⌦� case,
where solar-like DR is reproduced. The next key question is
how the AMF flux depends on the scale. Is the AMF positive
in the low latitude in the 3⌦� on all the scales? As explained
in section 3, we decompose the AMF to four scales (see also
Table 1). We note that the index i of f i

R,↵ does not represent
the Fourier wavenumber m, but is a value defined for conve-
nience in future discussions (see section 3 for detailed f

i
R,↵

definition).
Fig. 6 shows the f

1
R,↵, which corresponds to the spatial

scale of Lm � 240 Mm. In Fig. 6 and the following figures, we
use the same colour scale as Fig. 5 for comparison purposes.
At this spatial scale, the radial AMT is mostly negative in
all cases. In particular, there is strong inward transport in
the 1⌦� case (see Fig. 6a). We cannot see significant AMT
in the 3⌦� case (Fig. 6c and f). This absence may be related
to the suppression of the convection velocity on this scale
(Fig. 2). As for the latitudinal transport f

1
R,✓, the 3⌦� case

has smaller values than the other two cases, but the sign is
almost always positive in all the cases.

Fig. 7 shows f
2
R,↵, whose spatial scale corresponds to

120 Mm  Lm < 240 Mm. At this spatial scale, radially out-
ward transport exists outside the tangential in the 2⌦� and
3⌦� cases (Fig. 7b and c). It is worth noting that although we
observe radially inward (negative) scale-integrated AMF FR,r

in the 2⌦� case (Fig. 5b), we surely see radially outward (pos-
itive) AMF on a certain scale. In the 1⌦� case, the radially
inward transport is dominant (Fig. 7a). As for the latitudinal
AMF f

2
R,✓, the direction is always equatorward, whereas the

amplitude of the AMF increases from 1⌦� to 3⌦� cases. Fig.
2 shows that the convective energy in this scale is smaller in
the 3⌦� case. Thus, the increase of the amplitude in f

2
R,✓ can

MNRAS 000, 1–7 (2022)



6 K. Mori and H. Hotta

Figure 6. Scale-dependent AMFs f1
R,↵, which correspond to the

scale of Lm � 240 Mm are shown. The format of the panels is
identical to Fig. 5. A Gaussian filter with five grid points width
is applied in all directions to reduce the realization noise. f1

R,r is
mostly negative in all the cases. In particular, the 1⌦� case shows
strong inward transport. We cannot observe any significant AMT
in the 3⌦� case.

Figure 7. The same figure as Fig. 6, but for f2
R,↵, which corre-

sponds to the scale of 120 Mm  Lm < 240 Mm is shown. We can
find the radially outward AMT outside the tangential cylinder in
the 2⌦� and 3⌦� cases.

be explained with much higher anisotropy in the turbulence
(rotational influence) in the 3⌦� case.

Fig. 8 shows the results of f3
R,↵. The corresponding spatial

scale is 60 Mm  Lm < 120 Mm. At this spatial scale, only
the 3⌦� case shows the radially outward transport f

3
R,r out-

side the tangential cylinder (Fig. 8c). The amplitude of the
radially outward AMF in the 3⌦� decreases from f

2
R,r (Fig.

Figure 8. The same figure as Fig. 6, but for f3
R,↵, which corre-

sponds to the scale of 60 Mm  Lm < 120 Mm. Only the 3⌦�
case shows radially outward AMF outside the tangential cylinder
(panel c).

7c, 120 Mm  Lm < 240 Mm) and the negative region in-
creases. This is consistent with our original expectation that
the smaller-scale turbulence is less influenced by the rotation
and tends to show a negative radial AMF. Strong radially
inward AMF is dominant in the 1⌦� and 2⌦� cases (Fig. 8a
and b). In these two cases, the effect of rotation is smaller,
i.e. the inertia term seems dominant, and the radially inward
AMT is reproduced. As for the latitudinal transport f

3
R,✓,

the amplitude in the 3⌦� case is larger than in the other two
cases, but positive regions dominate in all cases (Fig. 8d, e,
and f). This tendency does not change from f

2
R,✓.

The results of f4
R,↵ are shown in Fig. 9. The corresponding

spatial scale is Lm < 60 Mm, which is the smallest scale. On
this spatial scale, the outward radial transport of the 3⌦�
case is not observed, and inward radial transport is domi-
nant in all cases (see Fig. 9a, b, and c). This result, that the
radially inward transport is dominant in the smallest scale in
all cases, is also consistent with our original expectation. The
latitudinal AMF is also positive in all cases. The amplitude
of the negative f

3
R,r is smaller in the 3⌦� case than in the

others.

5 SUMMARY AND CONCLUSION

We investigate the dependence of the AMT on the spatial
scale. The AMT has a vital role in constructing large-scale
effects such as DR and MF. We carry out three simulations
with the different rotation rates of ⌦0 = 1⌦�, 2⌦�, and 3⌦�
with solar stratification. The 3⌦� case has a solar-like DR
(fast equator) and the others have anti-solar DR (fast pole).
We propose a method based on Parseval’s theorem (Fourier
transform) to decompose the AMF by the Reynolds stress.
In our method, similar spatial scales are summed because the
wavenumber m in the longitudinal direction does not have a
one-to-one correspondence with the spatial scale. Although
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Figure 9. The same figure as Fig. 6, but for f4
R,↵, which corre-

sponds to the scale of Lm < 60 Mm. The radially inward AMF
dominates in all the cases.

magnetic fields are included in our simulations, they are not
included in our analysis because Fig. 4 shows that turbulence
is mostly balanced with the mean flow.

Our result is summarized below. For the 1⌦� case: The
rotational influence is expected to be weak. The radially in-
ward AMT is dominant on all scales. For the 2⌦� case: Al-
though the scale-integrated radial AMF is negative (radially
inward, Fig. 5b), we observe a positive radial AMF on the
scale 120 Mm  Lm < 240 Mm. This indicates that while
the rotational influence is weak in the 2⌦� as a whole, we
can extract a highly rotationally constrained scale. For the
3⌦�case: The scale-integrated radial AMT is positive (radi-
ally outward, Fig. 5c). The same sign for the radial AMF is
seen in 60 Mm  Lm < 240 Mm. Even in the 3⌦� case, the
small scale (Lm < 60 Mm) shows a negative radial AMF,
indicating the weak influence of the rotation. The strongest
AMF can be seen on the scale of 120 Mm  Lm < 240 Mm,
where the convective energy has a peak (Fig. 2). Our result
suggests that the rotation influence almost disappears on the
small scale. This inward transport (hv0rv0�i < 0) is thought to
be formed by the strong downflow (vr < 0) that dominates
at small scales.

We also find that the latitudinal AMF f
i
R,✓ is always pos-

itive regardless of the scale. This means that the latitudinal
Reynolds stress always tries to accelerate the equator but the
strong radially inward AMF and the resulting MF determine
the final topology of the DR, i.e. the solar-like or anti-solar
DR.

The most important finding in this study is that the small-
scale turbulence tends to transport the angular momentum
radially inward and causes the one-cell MF and resulting anti-
solar DR. This is expected from the previous high-resolution
simulation (e.g. Hotta et al. 2015). It is known that the high-
resolution simulations tend to fall into the anti-solar DR (see
also Hotta et al. 2022). This is consistent with our new finding
that the small scale causes the anti-solar DR.

In this study, we only focus on the AMT by the Reynolds

stress (turbulence). Recently Hotta et al. (2022) find that the
magnetic field (Maxwell stress) has a vital role in reproducing
the solar-like DR with the solar parameters. We can use the
same method as this study to understand the scale-dependent
Maxwell stress in the future.
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